Exercise 3

A particle moves according to a law of motion $s=f(t), t \geq 0$, where t is measured in seconds and s in feet.
(a) Find the velocity at time t.
(b) What is the velocity after 1 second?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the first 6 seconds.
(f) Draw a diagram like Figure 2 to illustrate the motion of the particle.
(g) Find the acceleration at time t and after 1 second.
(h) Graph the position, velocity, and acceleration functions for $0 \leq t \leq 6$.
(i) When is the particle speeding up? When is it slowing down?

$$
f(t)=\sin (\pi t / 2)
$$

Solution

Part (a)
To find the velocity, take the derivative of the position function.

$$
\begin{aligned}
v(t) & =\frac{d s}{d t} \\
& =\frac{d}{d t} \sin \frac{\pi t}{2} \\
& =\cos \frac{\pi t}{2} \cdot \frac{d}{d t}\left(\frac{\pi t}{2}\right) \\
& =\cos \frac{\pi t}{2} \cdot\left(\frac{\pi}{2}\right) \\
& =\frac{\pi}{2} \cos \frac{\pi t}{2}
\end{aligned}
$$

Part (b)

The velocity after 1 second has elapsed is

$$
v(1)=\frac{\pi}{2} \cos \frac{\pi}{2}=0 \frac{\text { feet }}{\text { second }} .
$$

Part (c)

To find when the particle is at rest, set the velocity function equal to zero and solve the equation for t.

$$
\begin{gathered}
v(t)=0 \\
\frac{\pi}{2} \cos \frac{\pi t}{2}=0 \\
\cos \frac{\pi t}{2}=0 \\
\frac{\pi t}{2}=\frac{1}{2}(2 n-1) \pi, \quad n=0, \pm 1, \pm 2, \ldots \\
t=2 n-1
\end{gathered}
$$

Since $0 \leq t \leq 6$, the particle is at rest when $t=1, t=3$, and $t=5$.

Part (d)

To find when the particle is moving in the positive direction, find what values of t satisfy $v(t)>0$.

$$
\begin{gathered}
v(t)>0 \\
\frac{\pi}{2} \cos \frac{\pi t}{2}>0 \\
\cos \frac{\pi t}{2}>0
\end{gathered}
$$

Note that a cosine curve is positive from 0 to $\pi / 2$ and from $3 \pi / 2$ to 2π.

$$
\begin{gathered}
0 \leq \frac{\pi t}{2}<\frac{\pi}{2} \quad \text { or } \quad \frac{3 \pi}{2}<\frac{\pi t}{2}<\frac{5 \pi}{2} \\
0 \leq t<1 \quad \text { or } \quad 3<t<5
\end{gathered}
$$

Therefore, the particle is moving in the positive direction for $[0,1) \cup(3,5)$.

Part (e)

The distance travelled in $0 \leq t<1$ is

$$
|s(1)-s(0)|=\left|\sin \frac{\pi}{2}-\sin \frac{\pi(0)}{2}\right|=1
$$

the distance travelled in $1<t<3$ is

$$
|s(3)-s(1)|=\left|\sin \frac{3 \pi}{2}-\sin \frac{\pi}{2}\right|=2,
$$

the distance travelled in $3<t<5$ is

$$
|s(5)-s(3)|=\left|\sin \frac{5 \pi}{2}-\sin \frac{3 \pi}{2}\right|=2
$$

and the distance travelled in $5<t<6$ is

$$
|s(6)-s(5)|=\left|\sin \frac{6 \pi}{2}-\sin \frac{5 \pi}{2}\right|=1 .
$$

Consequently, the total distance travelled in $0 \leq t \leq 6$ is $1+2+2+1=6$ feet.

Part (f)

Below is an illustration of the particle's motion from $t=0$ to $t=6$.

Part (g)

Calculate the derivative of the velocity to get the acceleration.

$$
\begin{aligned}
a(t) & =\frac{d v}{d t} \\
& =\frac{d}{d t}\left(\frac{\pi}{2} \cos \frac{\pi t}{2}\right) \\
& =\frac{\pi}{2}\left(-\sin \frac{\pi t}{2}\right) \cdot \frac{d}{d t}\left(\frac{\pi t}{2}\right) \\
& =-\frac{\pi}{2} \sin \frac{\pi t}{2} \cdot\left(\frac{\pi}{2}\right) \\
& =-\frac{\pi^{2}}{4} \sin \frac{\pi t}{2}
\end{aligned}
$$

The acceleration after 1 second is

$$
a(1)=-\frac{\pi^{2}}{4} \sin \frac{\pi}{2}=-\frac{\pi^{2}}{4} \frac{\text { feet }}{\text { second }^{2}} .
$$

Part (h)

Below is a plot of the position, velocity, and acceleration versus time for $0 \leq t \leq 6$.

Part (i)

The particle is speeding up when

$$
\begin{gathered}
-\frac{\pi^{2}}{4} \sin \frac{\pi t}{2}>0 \\
\sin \frac{\pi t}{2}<0
\end{gathered}
$$

Note that a sine curve is negative between π and 2π.

$$
\begin{gathered}
\pi<\frac{\pi t}{2}<2 \pi \\
2<t<4
\end{gathered}
$$

The particle is slowing down when

$$
\begin{gathered}
-\frac{\pi^{2}}{4} \sin \frac{\pi t}{2}<0 \\
\sin \frac{\pi t}{2}>0
\end{gathered}
$$

Note that a sine curve is positive between 0 and π.

$$
\begin{gathered}
0 \leq \frac{\pi t}{2}<\pi \quad \text { or } \quad 2 \pi<\frac{\pi t}{2} \leq 3 \pi \\
0 \leq t<2 \quad \text { or } \quad 4<t \leq 6
\end{gathered}
$$

